Oracle Database
Smart Flash Cache
Overview

Harald van Breederode
Oracle University
28-NOV-2011
About Me

• #include <std/disclaimer.h>
• Senior Principal DBA Trainer – Oracle University
• 25 years Unix Experience
• 12 years Oracle DBA Experience
• Oracle8i, 9i, 10g and 11g OCP
• Oracle10g and Oracle11g OCM
• DBA Certification Exam Team Reviewer
• DBA Curriculum Development Reviewer
• Blog: prutser.wordpress.com
• Visually Impaired (Legally Blind)
Agenda

• Overview
• Buffer Cache basics
• Oracle Database I/O basics
• Oracle Database and Flash technology
• Database Smart Flash Cache architecture
• Database Smart Cache parameters
• Database Smart Flash Cache configurations
• Database Smart Flash Cache instrumentation
• Demo
• References
• Questions & Answers
Overview

The goal of this presentation is to answer the following questions:

• How to use flash products in Oracle Database environments
• What is the Oracle Database Smart Flash Cache
• How to setup the Oracle Database Smart Flash Cache
Buffer Cache Basics

The main buffer cache structures are:

• **Buffers**
 – Each buffer may hold one block image at any given time

• **Buffer headers**
 – Store metadata about contents of the buffers
 – Act as buffer cache management structures

• **Buffer pools**
 – Collections of buffers used for the same purpose
 – Enable multiple block size support
 – Enable multiple DBWR’s
 – Different management algorithms
Buffer Cache Management

Cache is managed by doubly linked lists:

- **REPL**
 - Buffers containing block images being used
- **REPL-AUX**
 - Buffers ready to be used for I/O or CR build
- **WRITE**
 - Dirty Buffers requiring I/O
- **WRITE-AUX**
 - Dirty Buffers with I/O in progress

Note: AUX lists avoid wasteful scanning
Buffer Cache I/O

- Server processes look for an available buffer on REPL-AUX
 - Buffer gets moved from REPL-AUX to REPL
 - Insertion point dictated by pool algorithm
 - Data block is read in buffer
- Servers move dirty buffers to WRITE during free buffer search
- DBWn writes dirty buffer contents to database
 - Buffer gets moved from WRITE to WRITE-AUX
 - Buffer is moved back to REPL-AUX Once block is written
- DBWn writes upon request
 - Make free buffers
 - Checkpoint
Basic Oracle Database I/O

A server process needs to access an Oracle database block:

- If block resides in the Oracle Buffer Cache
 - Logical read
 - Usually takes a few microseconds to complete

- If block does not resides in the Oracle Buffer Cache
 - Physical read
 - Oracle makes request to underlying layer (probably disk)
 - Usually takes several (5-15) milliseconds to complete
 - Response time depends on:
 - Rotating speed => Rotational delay
 - Type of disk: SATA, SAS, SAS2
 - Architecture: JBOD, SAN, NAS
 - Concurrency and amount of I/O
Improving Database I/O Performance

- Application tuning
 - Is this supported by application vendor?
- SQL statement tuning
 - Is this allowed by application vendor?
- Database tuning
 - Is this allowed by application vendor?
- Faster or more CPUs
 - Does it affect license costs?
- Faster or more memory
 - Are there enough memory slots available?
- Faster or more disks
 - Are there free drive bay’s available?
About Flash Technology

- Fast!
- But, quite an investment
- SSD disks
- Flash cards
 - Sun Flash Accelerator F20
 - Fusion-io ioDrive
- Flash based storage array’s
 - Sun Storage F5100 Flash Array
A Few Examples

• Sun Flash Accelerator F20
 – PCI-Express card
 – 96GByte capacity presented as 4 disk drives
 – Over 100,000 random IOPS

• Sun Storage F5100 Flash Array
 – 1RU form factor (rack mountable)
 – Up to 1.92TB capacity
 – Over 1 million IOPS

• Fusion-io ioDrive
 – PCI-Express card
 – 160, 320 or 640 Gbyte capacity presented as 1 disk drive
 – Over 100,000 random IOPS
Where Do We Put Them?

• Inside the SAN or NAS
 – Data has to travel over slow I/O channels
 – Flash reliability might be an issue
• Inside the database server
 – Sharing database files for RAC becomes impossible
 – Data is close to the database instance
What Should We Store On Flash

- Online redo log files?
- Control files?
- Data files?
- Temp files?
- Most frequently used data?
Introducing the Database Smart Flash Cache

- Not to be confused with Exadata Smart Flash Cache
- Unique Oracle DB feature on Oracle Linux and Oracle Solaris
- Expanding the buffer cache on flash storage
 - L1 cache - main memory
 - L2 cache - flash cache
- L2 buffer headers reside in L1 cache 100 bytes/buffer
- L2 buffers reside on flash storage
- 3 new doubly linked lists
 - L2REPL - Blocks that are cached in Smart Flash Cache
 - L2KEEP - Blocks to be kept in Smart Flash Cache
 - L2WRITE - Blocks ready to be written to Smart Flash Cache
- L2KEEP has priority over L2REPL
Buffer Cache Management Revisited

- Cold clean buffers aging out are moved to L2WRITE unless
 - Block is already in the Smart Flash Cache
 - Object is marked with `FLASH_CACHE` set to `NONE`
 - These are directly reused or moved to REPL-AUX
- DBWR writes blocks from L2WRITE into Smart Flash Cache
- Buffers are either placed on L2REPL or L2KEEP based on `FLASH_CACHE` attribute
 - `DEFAULT` => L2REPL
 - `KEEP` => L2KEEP
- Buffer is moved from L2WRITE to REPL-AUX
- If DBWR is busy writing to disk:
 - DBWR does not write to Smart Flash Cache
 - Buffers are directly moved to REPL-AUX
Basic Oracle Database I/O Revisited

A server process needs to access an Oracle database block:

- If block resides in the Oracle Buffer Cache
 - Logical read
 - Usually takes a few microseconds to complete
- If block resides in Database Smart Flash Cache
 - Optimized physical read
 - Usually takes several (1-5) tenths of a millisecond to complete
- If block does not resides in the Oracle Buffer Cache
 - Physical read
 - Oracle makes request to underlying layer (probably disk)
 - Usually takes several (5-15) milliseconds to complete
Database Smart Flash Cache Parameters

- **DB_SMART_FLASH_CACHE_FILE**
 - Location of Smart Flash Cache
 - 1 O/S or ASM filename
 - File cannot be shared by multiple databases or instances

- **DB_SMART_FLASH_CACHE_SIZE**
 - Size of the Database Smart Flash Cache
 - Guideline: 2 to 10 times db_cache_size
 - No dynamic resize
 - Set to 0 to disable Smart Flash Cache
 - Set to original size to re-enable it
What Will Be Cached?

• Caching is controlled by `FLASH_CACHE` object attribute
 - `NONE` – No caching
 - `DEFAULT` – Normal caching
 - `KEEP` – Cache as long as possible

• Visible in:
 - `DBA_CLUSTERS`
 - `DBA_INDEXES`
 - `DBA_IND_[SUB]PARTITIONS`
 - `DBA_LOB_[SUB]PARTITIONS`
 - `DBA_OBJECT_TABLES`
 - `DBA_SEGMENTS`
 - `DBA_TABLES`
 - `DBA_TAB_[SUB]PARTITIONS`
Example Setups

• Using Sun Flash Accelerator F20
 – Create ASM disk group on all 4 flash disks
 – Set `DB_SMART_FLASH_CACHE_FILE` to +DG
 – Set `DB_SMART_FLASH_CACHE_SIZE` to desired cache size
 – Multiple databases or instances can share ASM disk group

• Using Fusion-io ioDrive
 – Create one or more Linux partitions or Solaris slices
 – Set `DB_SMART_FLASH_CACHE_FILE` to partition or slice
 – Set `DB_SMART_FLASH_CACHE_SIZE` to partition/slice size

• Alternative setup
 – Create Linux or Solaris filesystem on flash drive(s)
 – Set `DB_SMART_FLASH_CACHE_FILE` to filesystem file
 – Set `DB_SMART_FLASH_CACHE_SIZE` to desired cache size
When to configure Database Smart Flash Cache?

- Your database is running on Oracle Solaris or Oracle Linux
- AWR indicates that a larger buffer cache is beneficial
- DB file sequential read is a top wait event
- You have spare CPU capacity
- In case of a RAC database each instance must have its own DB Smart Flash Cache
Database Smart Flash Cache Instrumentation

- Statistics
 - flash cache eviction: aged out
 - flash cache eviction: buffer pinned
 - flash cache eviction: invalidated
 - flash cache insert skip: DBWR overloaded
 - flash cache insert skip: corrupt
 - flash cache insert skip: exists
 - flash cache insert skip: modification
 - flash cache insert skip: not current
 - flash cache insert skip: not useful
 - flash cache inserts
 - physical read flash cache hits
Database Smart Flash Cache Instrumentation

- Wait events
 - db flash cache dynamic disabling wait
 - db flash cache invalidate wait
 - db flash cache multiblock physical read
 - db flash cache single block physical read
 - db flash cache write
 - write complete waits: flash cache
Case Study

- MCX Administration Services BV – The Netherlands
 - E-Business Suite management and hosting provider
- The problem:
 - Inconsistent database performance at peak hours
 - Blade servers at maximum RAM capacity
 - NAS storage reached its maximum performance
- The solution:
 - Database Smart Flash Cache using Fusion-io ioDrive
 - OLTP and batch performance increased 60-80%
 - Consistent performance at all times
 - No new database servers and/or storage expansion!
- Reference:
 - http://fusionio.biz/case-studies/mcx/
Live Demo!
References

• **Oracle Database Administrators Guide**
 - http://docs.oracle.com/cd/E11882_01/server.112/e25494/toc.htm

• **Database Smart Flash Cache Whitepaper**

• **Sun Flash Accelerator F20**

• **Sun Storage F5100 Flash Array**

• **Fusion-io ioDrive**
 - http://fusionio.biz/platforms/iodrive/
Credits

I’d like to thank the following people:

• Joel Goodman – Oracle University UK
 – Technical contributor and reviewer
• Christian Spaans - MCX Administration Services BV NL
 – Technical contributor
• Bernard van Aalst - MCX Administration Services BV NL
 – Technical contributor
• Hester Marijnissen
 – Editor
QUESTIONS & ANSWERS
And Finally

Thank you for your kind attention!

For a copy of my demonstration scripts email me at:

Harald.van.Breederode@oracle.com

Remember: prutser.wordpress.com